Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Pharm Dev Technol ; : 1-42, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626316

RESUMO

Sleep disorders are one of the most common acute reactions on the plateau, which can cause serious complications. However, there is no effective and safe treatment currently available. Nimodipine (NMD) is a dihydropyridine calcium channel blocker with neuroprotective and vasodilating activity, mainly used for the treatment of ischemic brain injury. Commercial oral or injectable NMD formulations are not a good option for central neuron diseases due to their poor brain delivery. In this study, nimodipine dissolving microneedles (NDMNs) were prepared for the prevention of sleep disorders caused by hypoxia. NDMNs were composed of NMD and polyvinyl pyrrolidone (PVP) K90 with a conical morphology and high rigidity. After administration of NDMNs on the back neck of mice, the concentration of NMD in the brain was significantly higher than that of oral medication as was confirmed by the fluorescent imaging on mouse models. NDMNs enhanced cognitive function, alleviated oxidative stress, and improved the sleep quality of mice with high-altitude sleep disorders. The blockage of calcium ion overloading may be an important modulation mechanism. NDMNs are a promising and user-friendly formulation for the prevention of high-altitude sleep disorders.

2.
J Transl Med ; 22(1): 272, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475878

RESUMO

BACKGROUND: In HBV-associated HCC, T cells often exhibit a state of functional exhaustion, which prevents the immune response from rejecting the tumor and allows HCC to progress. Moreover, polymerase-specific T cells exhibit more severe T-cell exhaustion compared to core-specific T cells. However, whether HBV DNA polymerase drives HBV-specific CD8+ T cell exhaustion in HBV-related HCC remains unclear. METHODS: We constructed a Huh7 cell line stably expressing HA-HBV-DNA-Pol and applied co-culture systems to clarify its effect on immune cell function. We also examined how HBV-DNA-Pol modulated PD-L1 expression in HCC cells. In addition, HBV-DNA-Pol transgenic mice were used to elucidate the underlying mechanism of HBV-DNA-Pol/PD-L1 axis-induced T cell exhaustion. RESULTS: Biochemical analysis showed that Huh7 cells overexpressing HBV-DNA-Pol inhibited the proliferation, activation, and cytokine secretion of Jurkat cells and that this effect was dependent on their direct contact. A similar inhibitory effect was observed in an HCC mouse model. PD-L1 was brought to our attention during screening. Our results showed that the overexpression of HBV-DNA-Pol upregulated PD-L1 mRNA and protein expression. PD-L1 antibody blockade reversed the inhibitory effect of Huh7 cells overexpressing HBV-DNA-Pol on Jurkat cells. Mechanistically, HBV-DNA-Pol interacts with PARP1, thereby inhibiting the nuclear translocation of PARP1 and further upregulating PD-L1 expression. CONCLUSIONS: Our findings suggest that HBV-DNA-Pol can act as a regulator of PD-L1 in HCC, thereby directing anti-cancer immune evasion, which further provides a new idea for the clinical treatment of liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Vírus da Hepatite B/genética , DNA Viral , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , DNA Polimerase Dirigida por DNA/metabolismo
3.
Hepatol Commun ; 8(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358372

RESUMO

BACKGROUND: The essential function of HBV DNA polymerase (HBV-DNA-Pol) is to initiate viral replication by reverse transcription; however, the role of HBV-DNA-Pol in HBV-associated HCC has not been clarified. Glycogen phosphorylase L (PYGL) is a critical regulator of glycogenolysis and is involved in tumorigenesis, including HCC. However, it is unknown whether HBV-DNA-Pol regulates PYGL to contribute to HCC tumorigenesis. METHODS: Bioinformatic analysis, real-time quantitative PCR, western blotting, and oncology functional assays were performed to determine the contribution of HBV-DNA-Pol and PYGL to HCC development and glycolysis. The mechanisms of co-immunoprecipitation and ubiquitination were employed to ascertain how HBV-DNA-Pol upregulated PYGL. RESULTS: Overexpression of HBV-DNA-Pol enhanced HCC progression in vitro and in vivo. Mechanistically, HBV-DNA-Pol interacted with PYGL and increased PYGL protein levels by inhibiting PYGL ubiquitination, which was mediated by the E3 ligase TRIM21. HBV-DNA-Pol competitively impaired the binding of PYGL to TRIM21 due to its stronger binding affinity to TRIM21, suppressing the ubiquitination of PYGL. Moreover, HBV-DNA-Pol promoted glycogen decomposition by upregulating PYGL, which led to an increased flow of glucose into glycolysis, thereby promoting HCC development. CONCLUSIONS: Our study reveals a novel mechanism by which HBV-DNA-Pol promotes HCC by controlling glycogen metabolism in HCC, establishing a direct link between HBV-DNA-Pol and the Warburg effect, thereby providing novel targets for HCC treatment and drug development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/genética , Glicogênio , Carcinoma Hepatocelular/genética , DNA Viral , Neoplasias Hepáticas/genética , DNA Polimerase Dirigida por DNA/genética , Carcinogênese/genética
4.
Nat Metab ; 6(1): 78-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38191667

RESUMO

The coexistence of brown adipocytes with low and high thermogenic activity is a fundamental feature of brown adipose tissue heterogeneity and plasticity. However, the mechanisms that govern thermogenic adipocyte heterogeneity and its significance in obesity and metabolic disease remain poorly understood. Here we show that in male mice, a population of transcription factor jun-B (JunB)-enriched (JunB+) adipocytes within the brown adipose tissue exhibits lower thermogenic capacity compared to high-thermogenic adipocytes. The JunB+ adipocyte population expands in obesity. Depletion of JunB in adipocytes increases the fraction of adipocytes exhibiting high thermogenic capacity, leading to enhanced basal and cold-induced energy expenditure and protection against diet-induced obesity and insulin resistance. Mechanistically, JunB antagonizes the stimulatory effects of PPARγ coactivator-1α on high-thermogenic adipocyte formation by directly binding to the promoter of oestrogen-related receptor alpha, a PPARγ coactivator-1α downstream effector. Taken together, our study uncovers that JunB shapes thermogenic adipocyte heterogeneity, serving a critical role in maintaining systemic metabolic health.


Assuntos
Resistência à Insulina , Camundongos , Masculino , Animais , PPAR gama/metabolismo , Adipócitos Marrons/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Dieta Hiperlipídica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Front Plant Sci ; 14: 1306580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38093999

RESUMO

Reactive oxygen species (ROS) are closely related to the antiviral immune response of plants, while virus can regulate ROS through various pathways to facilitate their own infection or replication. Citrus yellow vein clearing virus (CYVCV) is one of the most devastating viruses affecting lemon (Citrus limon) industry worldwide. However, the pathogenesis of CYVCV remains poorly understood. In this study, direct interaction between the coat protein (CP) of CYVCV and the ascorbate peroxidase 1 of lemon (ClAPX1) was confirmed for the first time by yeast two-hybrid, Bimolecular Fluorescence Complementation, and Co-immunoprecipitation assays. Transient expression of CP in lemon and Nicotiana benthamiana significantly enhanced the enzyme activity of the ClAPX1, and then inhibited the accumulation of H2O2. In addition, overexpression of ClAPX1 in lemon by transgene significantly promoted CYVCV accumulation and depressed the expression of most genes involved in jasmonic acid (JA) signaling pathway. Correspondingly, ClAPX1 silencing by RNA interference inhibited CYVCV accumulation and increased the expression of most genes involved in JA signaling pathway. To our knowledge, this is the first report that viruses regulate ROS by targeting APX directly, thereby suppressing host immune response and promoting viral accumulation, which may be mediated by JA signaling pathway.

6.
Nat Commun ; 14(1): 8170, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071219

RESUMO

Human cancer cell lines have long served as tools for cancer research and drug discovery, but the presence and the source of intra-cell-line heterogeneity remain elusive. Here, we perform single-cell RNA-sequencing and ATAC-sequencing on 42 and 39 human cell lines, respectively, to illustrate both transcriptomic and epigenetic heterogeneity within individual cell lines. Our data reveal that transcriptomic heterogeneity is frequently observed in cancer cell lines of different tissue origins, often driven by multiple common transcriptional programs. Copy number variation, as well as epigenetic variation and extrachromosomal DNA distribution all contribute to the detected intra-cell-line heterogeneity. Using hypoxia treatment as an example, we demonstrate that transcriptomic heterogeneity could be reshaped by environmental stress. Overall, our study performs single-cell multi-omics of commonly used human cancer cell lines and offers mechanistic insights into the intra-cell-line heterogeneity and its dynamics, which would serve as an important resource for future cancer cell line-based studies.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Multiômica , Linhagem Celular Tumoral , Epigenômica , Transcriptoma , Neoplasias/genética
7.
Clin Interv Aging ; 18: 1893-1904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020451

RESUMO

Objective: Discussing the relationship between geriatric nutritional risk index (GNRI) and platelet-to-lymphocyte ratio (PLR) on stroke-associated pneumonia (SAP) in acute ischemic stroke (AIS) patients, developing and validating a web-based dynamic nomogram. Methods: A total of 996 AIS patients admitted to the Department of General Medicine and Neurology at Xuzhou Medical University Affiliated Hospital were collected. They were divided into Non-SAP group and SAP group based on the occurrence of SAP. The data was randomly divided into training set and validation set in a ratio of 7:3. LASSO regression and multivariable logistic regression analysis were used to screen for independent risk factors and develop a dynamic nomogram. Area under the receiver operating characteristic curve (AUC-ROC), calibration curve, and decision curve analysis (DCA) curve were used to validate the model's discriminative ability, calibration, and clinical value, respectively. Results: Among AIS patients, a total of 221 cases (22.19%) developed SAP. Age, NIHSS score, comorbid atrial fibrillation, dysphagia, PLR, and GNRI were identified as independent factors influencing the occurrence of SAP in AIS patients. A web-based dynamic nomogram was developed based on these six variables. The training set showed an AUC-ROC of 0.864 (95% CI: 0.828-0.892), while the validation set showed an AUC-ROC of 0.825 (95% CI: 0.772-0.882), indicating good predictive ability and discrimination of the model. The calibration curve demonstrated good calibration of the model, and the DCA curve showed its clinical value. This model can be accessed and utilized by anyone on the website (https://moonlittledoctor.shinyapps.io/ANADPG/). Conclusion: PLR and GNRI are independent factors influencing the occurrence of SAP in AIS patients, and a dynamic nomogram was constructed to predict the risk of SAP in AIS patients. It can guide clinical decision-making and improve patient prognosis.


Assuntos
AVC Isquêmico , Pneumonia , Acidente Vascular Cerebral , Humanos , Idoso , Nomogramas , Acidente Vascular Cerebral/complicações , Linfócitos , Pneumonia/complicações , Internet
8.
Cell Rep Med ; 4(10): 101231, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37852187

RESUMO

Neoadjuvant chemotherapy (NAC) for rectal cancer (RC) shows promising clinical response. The modulation of the tumor microenvironment (TME) by NAC and its association with therapeutic response remain unclear. Here, we use single-cell RNA sequencing and spatial transcriptome sequencing to examine the cell dynamics in 29 patients with RC, who are sampled pairwise before and after treatment. We construct a high-resolution cellular dynamic landscape remodeled by NAC and their associations with therapeutic response. NAC markedly reshapes the populations of cancer-associated fibroblasts (CAFs), which is strongly associated with therapeutic response. The remodeled CAF subsets regulate the TME through spatial recruitment and crosstalk to activate immunity and suppress tumor progression through multiple cytokines, including CXCL12, SLIT2, and DCN. In contrast, the epithelial-mesenchymal transition of malignant cells is upregulated by CAF_FAP through MIR4435-2HG induction, resulting in worse outcomes. Our study demonstrates that NAC inhibits tumor progression and modulates the TME by remodeling CAFs.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Retais , Humanos , Fibroblastos Associados a Câncer/patologia , Terapia Neoadjuvante , Transcriptoma/genética , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/genética , Neoplasias Retais/patologia , Proliferação de Células , Microambiente Tumoral/genética
9.
Exp Cell Res ; 433(2): 113823, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890607

RESUMO

Breast carcinoma (BC) is one of the most common malignant cancers in females, and metastasis remains the leading cause of death in these patients. Chemotaxis plays an important role in cancer cell metastasis and the mechanism of breast cancer chemotaxis has become a central issue in contemporary research. PKCζ, a member of the atypical PKC family, has been reported to be an essential component of the EGF-stimulated chemotactic signaling pathway. However, the molecular mechanism through which PKCζ regulates chemotaxis remains unclear. Here, we used a proteomic approach to identify PKCζ-interacting proteins in breast cancer cells and identified VASP as a potential binding partner. Intriguingly, stimulation with EGF enhanced this interaction and induced the translocalization of PKCζ and VASP to the cell membrane. Further experiments showed that PKCζ catalyzes the phosphorylation of VASP at Ser157, which is critical for the biological function of VASP in regulating chemotaxis and actin polymerization in breast cancer cells. Furthermore, in PKCζ knockdown BC cells, the enrichment of VASP at the leading edge was reduced, and its interaction with profilin1 was attenuated, thereby reducing the chemotaxis and overall motility of breast cancer cells after EGF treatment. In functional assays, PKCζ promoted chemotaxis and motility of BC cells through VASP. Our findings demonstrate that PKCζ, a new kinase of VASP, plays an important role in promoting breast cancer metastasis and provides a theoretical basis for expanding new approaches to tumor biotherapy.


Assuntos
Neoplasias da Mama , Quimiotaxia , Proteína Quinase C , Feminino , Humanos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Quimiotaxia/genética , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteômica
10.
ACS Omega ; 8(34): 31021-31029, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37663465

RESUMO

Due to the harsh working environments up to 600 °C, the exploration of high-temperature interconnection materials is significantly important for high-power devices. In this study, a hybrid paste including Cu@Ag core-shell microparticles (MPs) and Ag nanoparticles (NPs) was designed to achieve Cu-Cu bonding. The Cu@Ag MPs exhibited excellent oxidation stability in an air atmosphere with the Ag layer coating on the Cu core. Ag NPs fill the pores among the Cu@Ag MPs and reduce the sintering temperature of the hybrid paste. The Cu-hybrid paste-Cu joints were formed via electromagnetic induction heating within approximately 15 s. When sintered at 26 kW, the shear strength of the joint reached 48 MPa, the porosity decreased to 0.73%, and the resistivity was down to 13.25 µΩ·cm. Furthermore, a possible interconnection mechanism at the contact interface between the Cu substrate and the sintered hybrid paste was proposed, which is related to the melting point of metal particles and the effect of magnetic eddy currents. This fast bonding technology inspires a new approach to interconnection for high-power devices under high operation temperatures.

11.
Front Endocrinol (Lausanne) ; 14: 1226387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635957

RESUMO

Cytochrome P450 oxidoreductase deficiency (PORD) is a rare form of congenital adrenal hyperplasia that can manifest with skeletal malformations, ambiguous genitalia, and menstrual disorders caused by cytochrome P450 oxidoreductase (POR) mutations affecting electron transfer to all microsomal cytochrome P450 and some non-P450 enzymes involved in cholesterol, sterol, and drug metabolism. With the advancement of molecular biology and medical genetics, increasing numbers of PORD cases were reported, and the clinical spectrum of PORD was extended with studies on underlying mechanisms of phenotype-genotype correlations and optimum treatment. However, diagnostic challenges and management dilemma still exists because of unawareness of the condition, the overlapping manifestations with other disorders, and no clear guidelines for treatment. Delayed diagnosis and management may result in improper sex assignment, loss of reproductive capacity because of surgical removal of ruptured ovarian macro-cysts, and life-threatening conditions such as airway obstruction and adrenal crisis. The clinical outcomes and prognosis, which are influenced by specific POR mutations, the presence of additional genetic or environmental factors, and management, include early death due to developmental malformations or adrenal crisis, bilateral oophorectomies after spontaneous rupture of ovarian macro-cysts, genital ambiguity, abnormal pubertal development, and nearly normal phenotype with successful pregnancy outcomes by assisted reproduction. Thus, timely diagnosis including prenatal diagnosis with invasive and non-invasive techniques and appropriate management is essential to improve patients' outcomes. However, even in cases with conclusive diagnosis, comprehensive assessment is needed to avoid severe complications, such as chromosomal test to help sex assignment and evaluation of adrenal function to detect partial adrenal insufficiency. In recent years, it has been noted that proper hormone replacement therapy can lead to decrease or resolve of ovarian macro-cysts, and healthy babies can be delivered by in vitro fertilization and frozen embryo transfer following adequate control of multiple hormonal imbalances. Treatment may be complicated with adverse effects on drug metabolism caused by POR mutations. Unique challenges occur in female PORD patients such as ovarian macro-cysts prone to spontaneous rupture, masculinized genitalia without progression after birth, more frequently affected pubertal development, and impaired fertility. Thus, this review focuses only on 46, XX PORD patients to summarize the potential molecular pathogenesis, differential diagnosis of classic and non-classic PORD, and tailoring therapy to maintain health, avoid severe complications, and promote fertility.


Assuntos
Hiperplasia Suprarrenal Congênita , Fenótipo de Síndrome de Antley-Bixler , Cistos , Transtornos do Desenvolvimento Sexual , Feminino , Gravidez , Humanos , Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/genética , Hiperplasia Suprarrenal Congênita/terapia , Fenótipo de Síndrome de Antley-Bixler/diagnóstico , Fenótipo de Síndrome de Antley-Bixler/genética , Fenótipo de Síndrome de Antley-Bixler/terapia , Ruptura Espontânea , Cariótipo , Transtornos do Desenvolvimento Sexual/diagnóstico , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/terapia
12.
Cardiorenal Med ; 13(1): 282-291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37640012

RESUMO

INTRODUCTION: Patients with end-stage renal disease receiving hemodialysis (HD) have a high morbidity and mortality rate associated with pulmonary hypertension (PH). A nomogram was developed to predict all-cause mortality in HD patients with PH. In this study, we aimed to validate the usefulness of this nomogram. METHODS: A total of 274 HD patients with PH were hospitalized at the Affiliated Hospital of Xuzhou Medical University between January 2014 and June 2019 and followed up for 3 years. Echocardiography detected PH when the peak tricuspid regurgitation velocity (TRV) was more than 2.8 m/s. To evaluate the all-cause mortality for long-term HD patients with PH, Cox regression analysis was performed to determine the factors of mortality that were included in the prediction model. Next, the area under the receiver-operating characteristic curve (AUC-ROC) was used to assess the predictive power of the model. Calibration plots and decision curve analysis (DCA) were used to assess the accuracy of the prediction results and the clinical utility of the model. RESULTS: The all-cause mortality rate was 29.20% throughout the follow-up period. The nomogram comprised six commonly available predictors: age, diabetes mellitus, cardiovascular disease, hemoglobin, left ventricular ejection fraction, and TRV. The 1-year, 2-year, and 3-year AUC-ROC values were 0.842, 0.800, and 0.781, respectively. The calibration curves revealed excellent agreement with the nomogram, while the DCA demonstrated favorable clinical practicability. CONCLUSION: The first developed nomogram for predicting all-cause mortality in HD patients with PH could guide clinical decision-making and intervention planning.


Assuntos
Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/complicações , Nomogramas , Volume Sistólico , Função Ventricular Esquerda , Diálise Renal
13.
Cell Tissue Bank ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37368142

RESUMO

Cerebrospinal fluid-contacting neurons (CSF-cNs) act crucial role in chemosensory and mechanosensory function in spinal cord. Recently, CSF-cNs were found to be an immature neuron and may be involved in spinal cord injury recovery. But how to culture it and explore its function in vitro are not reported in previous research. Here, we first reported culture and identification of CSF-cNs in vitro. We first established a protocol for in vitro culture of CSF-cNs from the cervical spinal cord of mice within 24 h after birth. Polycystic kidney disease 2-like 1 (PKD2L1)+ cells were isolated by fluorescence-activated cell sorting and expressed the neuron marker ß-tubulin III and CSF-cNs marker GABA. Intriguingly, PKD2L1+ cells formed neurosphere and expressed neural stem cell markers Nestin, Sox2 and GFAP. Thus, our research provided culture and isolation of CSF-cNs and this facilitate the investigation the CSF-cNs function in vitro.

14.
Carbohydr Polym ; 316: 121024, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321722

RESUMO

Clinical wound management of combined radiation and burn injury (CRBI) remains a huge challenge due to serious injuries induced by redundant reactive oxygen species (ROS), the accompanying hematopoietic, immunologic suppression and stem cell reduction. Herein, the injectable multifunctional Schiff base cross-linked with gallic acid modified chitosan (CSGA)/oxidized dextran (ODex) hydrogels were rationally designed to accelerate wound healing through elimination of ROS in CRBI. CSGA/ODex hydrogels, fabricated by mixing solutions of CSGA and Odex, displayed good self-healing ability, excellent injectability, strong antioxidant activity, and favorable biocompatibility. More importantly, CSGA/ODex hydrogels exhibited excellent antibacterial properties, which is facilitated for wound healing. Furthermore, CSGA/ODex hydrogels significantly suppressed the oxidative damage of L929 cells in an H2O2-induced ROS microenvironment. The recovery of mice with CRBI in mice demonstrated that CSGA/ODex hydrogels significantly reduced the hyperplasia of epithelial cells and the expression of proinflammatory cytokine, and accelerated wound healing which was superior to the treatment with commercial triethanolamine ointment. In conclusion, the CSGA/ODex hydrogels as a wound dressing could accelerate the wound healing and tissue regeneration of CRBI, which provides great potential in clinical treatment of CRBI.


Assuntos
Queimaduras , Quitosana , Camundongos , Animais , Quitosana/farmacologia , Quitosana/uso terapêutico , Dextranos/farmacologia , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Cicatrização , Queimaduras/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
15.
Cell Res ; 33(8): 585-603, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337030

RESUMO

Dissecting and understanding the cancer ecosystem, especially that around the tumor margins, which have strong implications for tumor cell infiltration and invasion, are essential for exploring the mechanisms of tumor metastasis and developing effective new treatments. Using a novel tumor border scanning and digitization model enabled by nanoscale resolution-SpaTial Enhanced REsolution Omics-sequencing (Stereo-seq), we identified a 500 µm-wide zone centered around the tumor border in patients with liver cancer, referred to as "the invasive zone". We detected strong immunosuppression, metabolic reprogramming, and severely damaged hepatocytes in this zone. We also identified a subpopulation of damaged hepatocytes with increased expression of serum amyloid A1 and A2 (referred to collectively as SAAs) located close to the border on the paratumor side. Overexpression of CXCL6 in adjacent malignant cells could induce activation of the JAK-STAT3 pathway in nearby hepatocytes, which subsequently caused SAAs' overexpression in these hepatocytes. Furthermore, overexpression and secretion of SAAs by hepatocytes in the invasive zone could lead to the recruitment of macrophages and M2 polarization, further promoting local immunosuppression, potentially resulting in tumor progression. Clinical association analysis in additional five independent cohorts of patients with primary and secondary liver cancer (n = 423) showed that patients with overexpression of SAAs in the invasive zone had a worse prognosis. Further in vivo experiments using mouse liver tumor models in situ confirmed that the knockdown of genes encoding SAAs in hepatocytes decreased macrophage accumulation around the tumor border and delayed tumor growth. The identification and characterization of a novel invasive zone in human cancer patients not only add an important layer of understanding regarding the mechanisms of tumor invasion and metastasis, but may also pave the way for developing novel therapeutic strategies for advanced liver cancer and other solid tumors.


Assuntos
Ecossistema , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Neoplasias Hepáticas/patologia , Hepatócitos/metabolismo , Terapia de Imunossupressão , Linhagem Celular Tumoral
16.
Mucosal Immunol ; 16(4): 499-512, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209959

RESUMO

The unfolded protein response (UPR) is associated with the risk of asthma, including treatment-refractory severe asthma. Recent studies demonstrated a pathogenic role of activating transcription factor 6a (ATF6a or ATF6), an essential UPR sensor, in airway structural cells. However, its role in T helper (TH) cells has not been well examined. In this study, we found that ATF6 was selectively induced by signal transducer and activator of transcription6 (STAT6) and STAT3 in TH2 and TH17 cells, respectively. ATF6 upregulated UPR genes and promoted the differentiation and cytokine secretion of TH2 and TH17 cells. T cell-specific Atf6-deficiency impaired TH2 and TH17 responses in vitro and in vivo and attenuated mixed granulocytic experimental asthma. ATF6 inhibitor Ceapin A7 suppressed the expression of ATF6 downstream genes and TH cell cytokines by both murine and human memory clusters of differentiation 4 (CD4)+ T cells. At the chronic stage of asthma, administration of Ceapin A7 lessened TH2 and TH17 responses, leading to alleviation of both airway neutrophilia and eosinophilia. Thus, our results demonstrate a critical role of ATF6 in TH2 and TH17 cell-driven mixed granulocytic airway disease, suggesting a novel option to combat steroid-resistant mixed and even T2-low endotypes of asthma by targeting ATF6.


Assuntos
Asma , Células Th2 , Camundongos , Humanos , Animais , Células Th2/metabolismo , Asma/metabolismo , Granulócitos/metabolismo , Inflamação/metabolismo , Células Th17/metabolismo , Modelos Animais de Doenças , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo
17.
Foods ; 12(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36981072

RESUMO

Foxtail millet husk (FMH) is generally removed and discarded during the first step of millet processing. This study aimed to optimize a method using deep eutectic solvents (DESs) combined with ultrasonic-assisted extraction (UAE) to extract phenols from FMH and to identify the phenolic compositions and evaluate the biological activities. The optimized DES comprised L-lactic acid and glycol with a 1:2 molar ratio by taking the total flavonoid content (TFC) and total phenolic content (TPC) as targets. The extraction parameters were optimized to maximize TFC and TPC, using the following settings: liquid-to-solid ratio of 25 mL/g, DES with water content of 15%, extraction time of 41 min and temperature of 51 °C, and ultrasonic power at 304 W. The optimized UAE-DES, which produced significantly higher TPC, TFC, antioxidant activity, α-glucosidase, and acetylcholinesterase inhibitory activities compared to conventional solvent extraction. Through UPLC-MS, 12 phenolic compounds were identified, with 1-O-p-coumaroylglycerol, apigenin-C-pentosyl-C-hexoside, and 1-O-feruloyl-3-O-p-coumaroylglycerol being the main phenolic components. 1-O-feruloyl-3-O-p-coumaroylglycerol and 3,7-dimethylquercetin were identified first in foxtail millet. Our results indicated that FMH could be exploited by UAE-DES extraction as a useful source of naturally derived antioxidants, along with acetylcholinesterase and α-glucosidase inhibitory activities.

18.
Int J Pharm ; 637: 122872, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36958611

RESUMO

Post-traumatic stress disorder (PTSD), which normally follows psychological trauma, has been increasingly studied as a brain disease. However, the blood-brain barrier (BBB) prevents conventional drugs for PTSD from entering the brain. Our previous studies proved the effectiveness of cannabidiol (CBD) against PTSD, but low water solubility, low brain targeting efficiency and poor bioavailability restricted its applications. Here, a bionic delivery system, camouflage CBD-loaded macrophage-membrane nanovesicles (CMNVs), was constructed via co-extrusion of CBD with macrophage membranes, which had inflammatory and immune escape properties. In vitro anti-inflammatory, cellular uptake and pharmacokinetic experiments respectively verified the anti-inflammatory, inflammatory targeting and immune escape properties of CMNVs. Brain targeting and excellent anti-PTSD effects of CMNVs had been validated in vivo by imaging and pharmacodynamics studies. In our study, the potential of ultrasound to open BBBs and improve the brain-targeted delivery of CBD was evaluated. In conclusion, this cell membrane bionic delivery system assisted with ultrasound had good therapeutic effect against PTSD mice, which is expected to help convey CBD to inflammatory areas within the brain and alleviate the symptoms of PTSD.


Assuntos
Canabidiol , Transtornos de Estresse Pós-Traumáticos , Camundongos , Animais , Canabidiol/farmacologia , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Biomimética , Macrófagos , Anti-Inflamatórios/uso terapêutico
19.
J Plant Res ; 136(3): 371-382, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36862271

RESUMO

Ascorbate peroxidase (APX) is one of the most important antioxidant enzymes in the reactive oxygen metabolic pathway of plants. The role of APX under biotic and abiotic stress conditions has been explored, but the response pattern of APX under biotic stresses is relatively less known. In this study, seven CsAPXs gene family members were identified based on the sweet orange (Citrus sinensis) genome and subjected to evolutionary and structural analysis using bioinformatics software. The APX genes of lemon (ClAPXs) were cloned and showed a high conservation to CsAPXs by sequences alignment. In citrus yellow vein clearing virus (CYVCV)-infected Eureka lemons (C. limon) at 30th day post inoculation, APX activity and accumulation of hydrogen peroxide (H2O2) and malondialdehyde were measured to be 3.63, 2.29, and 1.73 times to that of the healthy control. The expression levels of 7 ClAPX genes in different periods of CYVCV-infected Eureka lemon were analyzed. Notably, ClAPX1, ClAPX5, and ClAPX7 showed higher expression levels compared to healthy plants, while ClAPX2, ClAPX3, and ClAPX4 showed lower expression levels. Functional identification of ClAPX1 in Nicotiana benthamiana showed that increasing the expression of ClAPX1 could significantly reduce the accumulation of H2O2, and it was verified that ClAPX1 is located in the plasma membrane of the cell. The present study provided information on the evolution and function of citrus APXs and revealed for the first time their response pattern to CYVCV infection.


Assuntos
Citrus , Ascorbato Peroxidases/genética , Citrus/metabolismo , Peróxido de Hidrogênio/metabolismo , Plantas/metabolismo , Antioxidantes , Regulação da Expressão Gênica de Plantas
20.
Sci Rep ; 13(1): 3638, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869105

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of major causes of end-stage liver disease in the coming decades, but it shows few symptoms until it develops into cirrhosis. We aim to develop classification models with machine learning to screen NAFLD patients among general adults. This study included 14,439 adults who took health examination. We developed classification models to classify subjects with or without NAFLD using decision tree, random forest (RF), extreme gradient boosting (XGBoost) and support vector machine (SVM). The classifier with SVM was showed the best performance with the highest accuracy (0.801), positive predictive value (PPV) (0.795), F1 score (0.795), Kappa score (0.508) and area under the precision-recall curve (AUPRC) (0.712), and the second top of area under receiver operating characteristic curve (AUROC) (0.850). The second-best classifier was RF model, which was showed the highest AUROC (0.852) and the second top of accuracy (0.789), PPV (0.782), F1 score (0.782), Kappa score (0.478) and AUPRC (0.708). In conclusion, the classifier with SVM is the best one to screen NAFLD in general population based on the results from physical examination and blood testing, followed by the classifier with RF. Those classifiers have a potential to screen NAFLD in general population for physician and primary care doctors, which could benefit to NAFLD patients from early diagnosis.


Assuntos
Doença Hepática Terminal , Hepatopatia Gordurosa não Alcoólica , Humanos , Adulto , Área Sob a Curva , Cirrose Hepática , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...